A (one-sided) Prime Ideal Principle for Noncommutative Rings

نویسنده

  • MANUEL L. REYES
چکیده

In this paper we study certain families of right ideals in noncommutative rings, called right Oka families, generalizing previous work on commutative rings by T.Y. Lam and the author. As in the commutative case, we prove that the right Oka families in a ring R correspond bijectively to the classes of cyclic right R-modules that are closed under extensions. We define completely prime right ideals and prove the Completely Prime Ideal Principle, which states that a right ideal maximal in the complement of a right Oka family is completely prime. We exploit the connection with cyclic modules to provide many examples of right Oka families. We also show that the well-studied right Gabriel filters are examples of divisible right Oka families, which enjoy a stronger version of the Completely Prime Ideal Principle. Our methods produce some new results that generalize well-known facts from commutative algebra, and they also recover earlier theorems stating that certain noncommutative rings are domains—namely, proper right PCI rings and rings with the right restricted minimum condition that are not right artinian.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

*-σ-biderivations on *-rings

Bresar in 1993 proved that each biderivation on a noncommutative prime ring is a multiple of a commutatot. A result of it is a characterization of commuting additive mappings, because each commuting additive map give rise to a biderivation. Then in 1995, he investigated biderivations, generalized biderivations and sigma-biderivations on a prime ring and generalized the results of derivations fo...

متن کامل

Primal Ideals and Isolated Components

Introduction. L. Fuchs [2 ] has given for Noetherian rings a theory of the representation of an ideal as an intersection of primal ideals, the theory being in many ways analogous to the classical Noether theory. An ideal Q is primal if the elements not prime to Q form an ideal, necessarily prime, called the adjoint of Q. Primary ideals are necessarily primal, but not conversely. Analogous resul...

متن کامل

On zero-divisor graphs of quotient rings and complemented zero-divisor graphs

For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...

متن کامل

2 5 O ct 2 00 4 ORE EXTENSIONS OVER DUO RINGS

We show that there exist noncommutative Ore extensions in which every right ideal is two-sided. This answers a problem posed by Marks in [5]. We also provide an easy construction of one sided duo rings.

متن کامل

One-sided Noncommutative Gröbner Bases with Applications to Computing Green's Relations *

Standard noncommutative Gröbner basis procedures are used for computing ideals of free noncommutative polynomial rings over fields. This paper describes Gröbner basis procedures for one-sided ideals in finitely presented noncommutative algebras over fields. The polynomials defining a K-algebra A as a quotient of a free K-algebra are combined with the polynomials defining a one-sided ideal I of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009